LEAF IMPRESSIONS FROM THE NEYVELI LIGNITE DEPOSITS, TAMIL NADU INDIA

ANIL AGARWAL
Birbal Sahni Institute of Palaeobotany, Lucknow - 226 007

Three leaf impressions, showing close resemblance with the extant genera, viz., Randia Linn. of Rubiaceae, Excoecaria Linn. of Euphorbiaceae and Melodinus of Apocynaceae have been described from the Neyveli Lignite deposits, Tamil Nadu, India. They have been named as Randia neyveliensis sp. nov., Excoecaria preagallocha sp. nov. and Melodinus japonicus Tanai (1970) respectively.

The Neyveli Lignite in South Arcot district, Tamil Nadu is a largest deposit of Lignite in India and contains both micro and megafossils. The later consists of carbonised woods and leaf impressions/compressions. The study on carbonised woods has been made by different workers. As a result a number of fossil woods have been reported showing their close resemblance with the modern taxa Hopea, Gluta, Carallia, Diospyros, Cordia Parinari, Bouea, Altingia, Bauhinia and Dracaena (Ambwani 1982; Awasthi 1984; Awasthi & Agarwal 1987; Agarwal 1989, 1990). On the other hand the study of leaf impressions is very meagre, only few preliminary reports were made. Singh & Mathew (1954) and Jacob & Jacob (1954) have mentioned the occurrence of leaves of angiosperms in the Neyveli Lignite. Chatterjee & Bhattacharya (1965) also described a compressed bark/leaf sheath of a palm like tree from here.

MATERIALS AND METHODS

In order to reconstruct the palaeovegetation and palaeoecology of this region a number of leaf impressions have been collected from Neyveli Lignite. Their detailed study was done and consulted the Herbaria of National Botanical Research Institute, Lucknow and Forest Research Institute, Dehradun for their identification. Of these, only three leaf impressions could be identified and described here in detail.

SYSTEMATIC DESCRIPTION

Family - Rubiaceae
Genus - Randia Linn.
Randia neyveliensis sp. nov.
(Pl.1, Fig 1)

Material - This species is based on a single, complete leaf impression.

Description - Leaf simple, symmetrical, narrow obovate lamina length 13.5 cm maximum width 5.8 cm; apex rounded; base acute, cuneate; margin entire; petiole indistinct; texture coriaceous; venation pinnate, simple craspedodromous; primary vein (1°) single, prominent, thicker in lower part, moderate, almost straight, slightly curved at the tip, secondary veins (2°) 7 pairs with angle of divergence acute (60°) moderate, alternate, 1.8-2.7 cm apart, uniformly curved, usually unbranched; tertiary veins (3°) partly preserved.

Affinities - The most characteristic features of the present leaf impression like obovate shape, rounded apex, cuneate base and simple craspedodromous venation indicate its resemblance with the modern leaves of Randia uliginosa Retz. of the family Rubiaceae (Forest Research Institute, Herbarium sheet No. 22350). Three species of fossil leaves of Randia have so far been recorded. These are Randia prodroma Ung. from the Miocene of Sarmatsalzhansen in Germany (Salomon, 1934), R. gossferiana (Kschun) from the Tertiary of Klannungebieten Germany (Menzel, 1920) and R. mohavensis Axelrod (1950) from the Miocene of Kinnick, Techachapi, North America (LaMotte, 1952).

As the present Neyveli fossil is different from all these known species of Randia Linn., it has been assigned to a new species Randia neyveliensis, Randia uliginosa Retz. (Syn. G. uliginosa Roxb.) with which fossil shows close resemblance, is a small tree and grows in all dry districts of eastern, central and southern India.

Holotype - BSIP Museum No. 36590
Age - Miocene

Family - Euphorbiaceae
Genus - Excoecaria Linn.
Anil Agarwal leaves of *Excoecaria agallocha* Linn. (Forest Research Institute Museum sheet no. 17672, 2985/17243).

So far only one fossil leaf resembling the genus *Excoecaria* is described as *E. palaeocrenulata* (Awasthi & Prasad, 1990) from the Siwalik of Suraikhola, Nepal. This Siwalik leaf differs from the present fossil in having crenulate margin in comparison to almost entire margin in this specimen. Therefore, a new name *E. preagallocha* sp. nov. has been given to it, the specific epithet indicating its similarity with *E. agallocha*. *E. agallocha* which is compared with the fossil leaf, is a small to moderate sized tree occurring in Sunderban, Andaman and on the coast of Burma and Ceylon. It is found in the tidal forest on both sides of the peninsula of India (Brandis, 1971, p 585).

Holotype - BSIP Museum No. 36591

Age - Miocene

Family - Apocynaceae

Genus Melodinus Forst

Melodinus japonicus Tanai, 1970

(PI. 2, Figs 1,3).

Material - This species is based on single leaf impression.

Description - Leaf simple, symmetrical, elliptic, preserved leaf length 3.7 cm, maximum width 2.6 cm, apex broken; base wide acute; margin almost entire; texture thick chartaceous; petiole not preserved; venation pinnate, brachidodromous; primary vein (1°) single, prominent, stout, almost straight; secondary veins (2°) more than 10 pairs visible, 0.3-1 cm apart, angle of divergence nearly at right angle, uniformly curved, usually unbranched; inter-secondary veins present, simple; higher order venation not clear.

Affinities - The above characteristic features of the fossil leaf undoubtedly indicate its affinity with *Melodinus monogynus* Roxb. of the family Apocynaceae.

A fossil leaf showing close resemblance with the leaves of *M. monogynus* Roxb. has already been described by Tanai (1970) from Tertiary of Japan and also exhibits similar characters as of the present fossil leaf. Hence, this Neyveli specimen has been assigned to the same.

Melodinus monogynus Roxb. with which the fossil leaf shows close resemblance now grows in Assam, Khasi hills, Manipur and in Malaya peninsula (Brandis, 1971).
Leaf Impressions from the Neyveli Lignite Deposits

Plate 2

2 & 4. *Excoecaria agallocha* - Modern leaves in natural size showing similarity with the fossil leaves.
6. *Melodinus monogynous* - A modern leaf in natural size showing similarity with the fossil leaf.

Specimen - BSIP Museum No. 36592.

Age - Miocene

I am thankful to the authorities of Neyveli Lignite Corporation, for permission to collect the material, to the authorities of National Botanical Research Institute, Lucknow and Forest Research Institute, Dehradun for permitting me to consult their Herbarium, and to Dr. B. S. Venkatachala, Director, Birbal Sahni Institute of Palaeobotany, Lucknow for useful discussion and constant encouragement throughout the progress of this work.
REFERENCES

Agarwal A 1989 Occurrence of Bouea in the Neyveli Lignite deposits, India Geophytology 18 (2) 166-168.
Agarwal A 1990 Occurrence of Altingia and Bauhinia from the Neyveli Lignite deposits, India Phytomorphology (In press).
Ambwani K 1982 Occurrence of fossil axis belonging to Agavaeae from Neyveli Lignite, South India Geophytology 12 (2) 322-324.
Awasthi N 1984 Studies on some carbonised woods from the Neyveli Lignite deposits, India Geophytology 14 82-95.
Awasthi N & A Agarwal 1987 A carbonised wood resembling Parinari from the Neyveli Lignite, India Palaeobotanist 35 57-60.
LaMotte R S 1952 Catalogue of the Cenozoic plants of North America through 1950 Mem Geol Soc Am 51 1-381.
Menzel P 1920 II Uber Pflanzenreste aus basalttuffen des Kamerungebietes Beitr geol Erforsch dt Schutzgeb 18 16-32.
Salomon Calvi W 1934 Die Pflangen des Neogoi Kums Oberrheinischer Fossil Katalog Lieferunge 3 1-53.
Tanai T 1970 The oligocene florals from the Kushiro coal field Hoppais, Japan Faculty Science Ser IV Geology & Minerology 14 (4) 383-514.